Danish experience with MSW management Klaus Fafner, Ramboll IX International Investment Business Forum Renewable Energy and Energy Efficient Modernization of Industry November 2017

- Services across the markets:
 - Buildings
 - Transport
 - Environment & Health
 - Water
 - Energy
 - Oil & Gas
 - Management Consulting

Ramboll in brief

- Independent engineering and design consultancy and provider of management consultancy
- Founded 1945 in Denmark
- Over 13,000 experts
- Over 300 offices in 35 countries
- Significant presence in the Nordics, North America, the UK, Continental Europe, Middle East, Asia, Australia, South America and Sub-Saharan Africa

- EUR 1.1 billion revenue
- Owned by Ramboll Foundation
- Ramboll Energy World leaders in low carbon, district energy infrastructure and waste to energy
- At the forefront of developments in Danish district heating sector for over 40 years

1. The Danish Approach as regards Municipal Solid Waste Management

2. Waste Strategy

3. Impact of Strategy on District Heating

4. Challenges for Energy Recovery Facilities

1. The Danish Approach as regards Municipal Solid Waste Management

2. Waste Strategy

3. Impact of Strategy on District Heating

4. Challenges for Energy Recovery Facilities

115 YEARS OF WASTE INCINERATION IN

115 YEARS OF WASTE INCINERATION IN DENMARK - HIGHLIGHTS

- Waste-to-Energy facilities are public utilities owned by the municipalities a are based on Not for Profit principles
- New energy policy in 1990:
 - Heat primarily to be produced in CHP: Combined Heat and Power plants
 - Existing plants to be converted to CHP
- 1997: Ban on landfilling of combustible waste
- Today waste is regarded a useful fuel for CHP production - for waste that cannot be recycled or reused
 - More than 20% of all district heating is from waste incineration
 - 5% of electricity is from waste incineration

THE DANISH APPROACH: MAIN FOCUS ON WASTE INCINERATION

- Waste incineration makes a significant contribution to reduction of CO2 emissions.
- Waste incineration minimize the landfilling of waste. Just 6% of Denmark's waste ends up in a landfill.
- Danish waste incineration plants are the cleanest and most efficient in the world, generating approx. 2 MWh heat and 2/3 MWh electricity from every ton of waste incinerated.
- A new strategic approach to waste is to encourage recycling over incineration. By 2022, 50% more household waste will be recycled instead of incinerated.

MUNICIPAL WASTE TREATMENT IN 2015 EU 28 + SWITZERLAND, NORWAY AND ICELAND

TYPICAL DISTRIBUTION OF INCINERATION COSTS and income

AMAGER BAKKE, COPENHAGEN, DENMARK

- Green-field WtE facility
- Capacity: 2 x 280,000 tonnes of waste annually
- Energy output: 400,000 MWh electricity and 1,000,000 MWh heat per year
- From project analysis and planning to take over
- Owners Engineer on M&E, site management
- Commissioning: 2016

KARA/NOVEREN, ROSKILDE, DENMARK

- New waste-to-energy unit
- 200,000 tpa
- From project analysis and planning to take over
- Owners Engineer on M&E
- Commissioning: 2013

I/S NORDFORBRÆNDING, DENMARK

RAMBOLL

- New unit for waste-to-energy facility
- 96,000 Tpa
- From project planning to take over
- M&E advisor and Owners Engineer
- Commissioning: 2016

1. The Danish Approach as regards Municipal Solid Waste Management

2. Waste Strategy

3. Impact of Strategy on District Heating

4. Challenges for Energy Recovery Facilities

TIMELINE OF REGULATION AND STRATEGIES

ROADMAP TO A RESOURCE EFFICIENT EUROPE FROM 2011:

Denmark became member of EU in 1973

EU MILESTONES BY 2020:

- Waste is managed as a resource
- Waste generated per capita is in absolute decline
- Waste legislation is fully implemented
- Energy recovery (by waste-toenergy) is limited to non recyclable materials
- Landfilling is virtually eliminated
- High quality recycling is ensured

THE STRATEGIC WASTE HIERARCHY

CIRCULAR ECONOMY AND WASTE HIERARCHY

Energy Recovery Facilities

- ERF important measure to ensure energy recovery from "last cascade" of recycling
- ERF important measure to ensure a safe sink for polluted materials
- ERF can ensure recovery of the small metal fractions

WASTE HIERARCHY AND COST INCENTIVES

RECYCLING

- Pre-sorting and recycling
- "Free" entrance for households
- Gate fee for companies: 20- 60 €/visit
- 20-30 waste types

WASTE TO ENERGY

Average fee 2011	\$/ ton
Fee	42
Тах	39
Gate fee	81

37%
63%
63%
Household
Commercial waste

LANDFILL

Average fee 2011	\$/ ton
Fee	65
Тах	85
Gate fee	150

GATE FEES IN EUROPE

1. The Danish Approach as regards Municpal Solid Waste Management

2. Waste Strategy

3. Impact of Strategy on District Heating

4. Challenges for Energy Recovery Facilities

WASTE INCINERATION AND DISTRICT HEATING IN DENMARK

Main DH systems	Systems	Average	Produced	Waste	Biomass	Biomass	Surplus	Solar	Geo-	Fossil	Fossil
Denmark 2010		peak	heat	CHP	heat	CHP	heat	heat	thermal	CHP	heat
		MW	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh	GWh
Greater Copenhagen	1	3.386	9.481	2.223	43	1.218	0	0	161	5.682	154
Aarhus DH	1	1.063	3.083	577	97	28	53	0	0	2.318	10
Aalborg	1	587	1.761	307	0	0	446	0	0	1.000	7
TVIS	1	579	1.737	187	2	0	331	0	0	969	248
PP extraction	11	143	4.708	1.079	179	0	25	0	0	3.373	52
Waste + Biomass SC	18	57	3.062	1.785	201	690	12	0	7	202	164
Waste + Gas CC	8	52	1.240	530	89	9	0	0	0	488	122
Gas SC/CC	224	8	5.812	156	178	19	9	10	0	4.633	806
Bioenergy etc.	112	8	2.898	120	2.428	115	87	17	0	0	132
Sum	377		33.781	6.965	3.218	2.079	961	27	169	18.667	1.696
Share			100%	21%	10%	6%	3%	0%	0%	55%	5%

COPEHAGEN – THE BIGGEST DISTRICT HEATING SYSTEM WITH ENERGY FROM WASTE

Facts

160 km pipe mains

30.000 TJ/a heat sold

60 mill. M2 floor area heated

110 kg CO2 /MWh

25 % Waste-to-Energy

97 % CHP production mode

WASTE-TO-ENERGY AND DISTRICT HEATING AN ELEMENT OF SMART ENERGY SYSTEMS

Balancing supply and demand

Merit order of production to minimise cost and carbon emissions

Energy and price forecasting to avoiding spilling and to maximise value of within the power market (NORDPOOL)

Capturing, storing and dispatching "free heat"

Minimising heat losses though continuous optimisation

1. The Danish Approach as regards Municipal Solid Waste Management

2. Waste Strategy

3. Impact of Strategy on District Heating

4. Challenges for Energy Recovery Facilities

CHALLENGES FOR ENERGY RECOVERY FACILITIES

Prioritized heat production

Located in city suburbs

Built to toughest emission standards

Highest efficiencies through flue gas heat recovery

Designed for public acceptance through good architectural design

Good neighbors

CHALLENGES FOR ENERGY RECOVERY FACILITIES

- Commercial and Financial Environment
 - High investment costs and long development timescales
 - Risk reward profile deters private sector and 3rd party investors
 - Immature supply chain drives up costs
 - Complex stakeholder arrangements
- Policy environment
 - No direct support for heat networks
 - Policy instability at national level
 - Local planning policy insufficient leverage
- Technical challenges
 - Retrofitting costs (building temperatures and heating systems)
 - Development density
 - Existing utilities and grid connection
 - Supply chain lacks capacity and knowhow
- Capacity and appetite to deliver
 - Internal resources, funds, relevant skills
 - Access to finance
 - Appetite for risk

FINAL CONCLUSION: MAIN BENEFITS OF EFFICIENT WASTE MANAGEMENT

Provide a clear indication of **Government policy** which will shape the actions of local self-government units and give confidence in relation to investment

Relieving the pressure on the extraction of **raw materials** through the reuse of products and the recycling of paper, glass, plastic etc

A reduction of **greenhouse gas emissions** (e.g. through increasing diversion of biodegradable waste to landfill and managing LFG by flaring or utilization);

An increase in **job opportunities** in the waste sector and recycling sector;

An enhanced environment and a **cleaner and safer place to live**, through the prevention of pollution to ground, water and air, and reduced litter by the provision of safe landfills operated to best international practice.

ДЯКУЮ ЗА УВАГУ! THANK YOU FOR YOUR ATTENTION!

KLAUS FAFNER

KLF@RAMBOLL.COM

WWW.RAMBOLL.COM HTTP://BLOG.RAMBOLL.COM/URBANENERGYSOLUTIONS/

SEE OUR CLIMATE SOLUTIONS AT HTTP://WWW.STATEOFGREEN.COM/PROFILES/RAMBOLL

